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Abstract
This paper defines the unit Burr XII autoregressive moving average (UBXII-ARMA) model
for continuous random variables in the unit interval, where any quantile can be modeled by a
dynamic structure including autoregressive and moving average terms, time-varying regres-
sors, and a link function. Our main motivation is to analyze the time series of the proportion
of stored hydroelectric energy in Southeast Brazil and even identify a crisis period with
lower water levels. We consider the conditional maximum likelihood method for parameter
estimation, obtain closed-form expressions for the conditional score function, and conduct
simulation studies to evaluate the accuracy of the estimators and estimated coverage rates
of the parameters’ asymptotic confidence intervals. We discuss the goodness-of-fit assess-
ment and forecasting for the new model. Our forecasts of the proportion of the stored energy
outperformed those obtained from the Kumaraswamy autoregressive moving average and
beta autoregressive moving average models. Furthermore, only the UBXII-ARMA detected
a significant effect of lower water levels before 2002 and after 2013.
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1 Introduction

Hydro-environmental resources are fundamental for human activities such as energy gen-
eration, agricultural irrigation, navigation, tourism, and watershed management. They play
an important role in the functioning of society and in controlling global-scale hydrological
processes (Lehner et al. 2022; Sagrillo et al. 2021). Hence, when analyzing these data, it is
necessary to consider models that properly accommodate their characteristics. In the case of
variables serially dependent over time, we can refer to time series models based on Gaussian
assumptions, as are those more widely employed in hydrology and related areas. Classic
examples are the autoregressive moving average (ARMA) models and autoregressive inte-
grated moving average (ARIMA) models (Box et al. 2011). On the other hand, real-world
often data do not present Gaussian distributions, making this assumption quite restrictive for
various applications (Bayer et al. 2017; Palm et al. 2021).

Several models have been developed to overcome the issue of analyzing non-Gaussian
time series. Benjamin et al. (2003) extended theGaussianARMA time seriesmodels to a non-
Gaussian framework by developing dynamic models for random variables in the canonical
form of the exponential family, giving rise to the generalized autoregressive moving average
(GARMA) models. Recently, several time series models following a construction similar to
the GARMA model have been introduced. Melo and Alencar (2020) proposed the Conway–
Maxwell–Poisson autoregressive moving average model, which can be used for modeling
time series of counts with equidispersion, underdispersion, and overdispersion. Palm et al.
(2021) introduced the beta-binomial autoregressive moving average model for modeling
quantized amplitude data and bounded count data. Other recent advances were developed by
Bayer et al. (2020a, b), Almeida-Junior and Nascimento (2021), and Palm et al. (2022) in the
context of positive outcomes.

Alternative models for double-bounded time series are also needed since they avoid data
transformation before modeling. Moreover, models with support in IR or IR+ are not suitable
for analyzing time series of this type since these models can produce forecasting that extends
beyond the natural bounds of the data. We refer to the beta autoregressive moving average
(βARMA) (Rocha and Cribari-Neto 2009) and the Kumaraswamy autoregressive moving
average (KARMA) (Bayer et al. 2017) as pioneering models to time series taking values in
the double-bounded interval (a, b), such that a < b. These models have been widely applied
to hydrological problems. See Palm and Bayer (2017), Scher et al. (2020), and Bayer et al.
(2017), for instance. Recently, extensions were proposed for the βARMA model. Bayer
et al. (2023) introduced the inflated βARMA model, tailored for use with time series data
that assume values in the inflated intervals of zero or one. Additionally, Scher et al. (2023)
generalized the βARMAmodel, including a dynamic submodel for the precision parameter.
This approach allows the conditional precision to evolve over time, similar to the conditional
mean.

The βARMA and KARMA models employ parameterizations based on the conditional
mean and median, respectively. To the best of our knowledge, ARMA models for analyzing
other conditional quantiles, besides the median, of double-bounded responses are absent in
the literature. Thus, we attempt to fulfill this gap by proposing a dynamic model based on the
unit BurrXII (UBXII) quantile regression (Korkmaz andChesneau 2021; Ribeiro et al. 2022).
The so-called UBXII autoregressive moving average model (UBXII-ARMA) is obtained by
adding ARMA terms to the systematic component of the UBXII regression.

Quantile regression approaches to model double-bounded response variables to the unit
interval have been receiving attention in the literature. Several new unit distributions and
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their quantile regression-associated models have been defined and applied in many areas.
These new distributions are based on different transformations of positive random variables,
such as inverted exponential function and hyperbolic secant transformation; see, for example,
Korkmaz and Korkmaz (2021), Korkmaz et al. (2021a, 2022a, 2023) and Mazucheli et al.
(2023). Transformations of random variables with support in the unit interval and real line
have also been applied to generate new unit distributions and quantile regression models.
(Korkmaz et al. 2021b) applied the quadratic transmutation scheme on the unit Rayleigh
random variable and defined the transmuted unit Rayleigh quantile regression model. A
transformation of a random variable with a normal distribution involving the hyperbolic
secant function and its inverse was considered by Korkmaz et al. (2021c) to introduce the
arcsecant hyperbolic normal distribution and quantile regression. Similarly, Korkmaz et al.
(2022b) proposed the unit folded normal distribution and quantile regression by applying
the absolute hyperbolic tangent transformation to a normal random variable. Furthermore,
two regression models based on the Vasicek distribution, suitable for modeling the mean or
quantiles of the bounded responses in the unit interval, were presented by Mazucheli et al.
(2022).

The primarymotivation of our proposal is that it allows estimating the conditional quantiles
of the distribution of the response variable of interest with support on the (0, 1), providing a
complete view of possible relationships between predictor variables (Cade and Noon 2003;
Lima et al. 2022) and past values of the response variable, rather than analyzing only central
tendency effects. The quantile-based approach also allows for verifying the impact of the
quantiles on the model’s parameter values (Mazucheli et al. 2020). Our methodology offers
the advantage of assessing differences in the magnitude of extreme values instead of solely
analyzing mean or median impact estimations, as is common in other statistical approaches.
Specifically, we evaluate the tail values representing flood events (upper percentiles, when
the proportion of stored hydroelectric energy is very high). Another advantage is that quantile
estimates exhibit lower sensitivity to outliers compared to conditional mean estimations. For
instance, parametrizations in terms of the median can be more useful in the presence of
atypical observations in the conditional response or when the data present quite asymmetric
distribution (Bayer et al. 2017). Other recent studies that consider a similar approach using
quantile modeling can be found in Lima et al. (2022) and Mohsenipour et al. (2020).

A second motivation is the ability to accommodate hydro-environmental data that assume
values in the double-bounded interval. This usefulness is illustrated by the proportion of
stored hydroelectric energy in Southeast Brazil. Forecasting future levels of this variable
can contribute to the management of hydropower generation, such as projections of the
marginal cost and make-decision of companies in the electricity sector (http://www.ons.org.
br/). This information is increasingly important due to climate change, which has added
uncertainty to hydropower generation (Cribari-Neto et al. 2021). In this respect, time series
of the stored hydroelectric energy of other Brazilian regions have been studied by Palm and
Bayer (2017), Scher et al. (2020, 2023), and Cribari-Neto et al. (2021), using the βARMA
and its extensions. However, the UBXII density has shapes not assumed by the beta and
Kumaraswamy distributions, such as the reverse tilde shaped (Ribeiro et al. 2022). Thus, the
use of the βARMA and KARMA can be compromised for modeling hydro-environmental
data with these characteristics.

The remainder of this paper is outlined as follows. Section 2 introduces the new time
series model for conditional variables restricted to the interval (0, 1). Section 3 discusses
conditional maximum likelihood estimation for the UBXII-ARMA models and provides
closed-form expressions for the conditional score vector. Furthermore, we present asymptotic
confidence intervals for the model’s parameters based on the conditional maximum likeli-
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hood estimator (CMLE) properties. Some diagnostic measures and forecasting methods are
presented in Sect. 5. Monte Carlo simulation studies to assess the finite-sample performance
of the CMLEs are conducted in Sect. 6, where we evaluate the point estimates and the esti-
mated coverage probability from the asymptotic confidence intervals. Still, in this section,
we assess the performance of the proposed model’s CMLEs under the misspecification of the
random component. In Sect. 7, the analysis of the proportion of stored hydroelectric energy
is carried out to provide empirical evidence of the proposed model’s potentiality. Finally,
some conclusions are discussed in Sect. 8.

2 The proposed quantile UBXII-ARMAmodel

In this section, we introduce a dynamic time series model based on the UBXII distribution.
This distribution is obtained by an exponential transformation of a Burr XII (BXII) ran-
dom variable and can be reparameterized in two ways; see Korkmaz and Chesneau (2021)
and Ribeiro et al. (2022). In particular, the BXII distribution has been receiving attention
in regression modeling (Silva et al. 2008; de Araújo et al. 2022), and generalized distribu-
tions (Qin and Gui 2020; Bhatti et al. 2021; Guerra et al. 2021), among other related areas.
Our proposal is to incorporate the serial correlation into the UBXII regression model, intro-
ducing autoregressive and moving average terms in the linear predictor. We shall consider a
similar approach to that employed in the construction of the GARMA (Benjamin et al. 2003),
βARMA (Rocha and Cribari-Neto 2009), and KARMA (Bayer et al. 2017) models.

Let {yt }t ∈Z be the discrete-time observations, where each yt assumes values in the unit
interval and Ft−1 be the set of observations up to time t − 1. Notice that, if ỹ ∈ (a, b), we
can apply the transformation yt = (ỹ − a)/(b − a) to bring this double-bounded variable
to the unit interval. Let us assume that each yt follows a UBXII distribution conditionally
to Ft−1 with conditional quantile qt and shape parameter c, say yt |Ft−1 ∼ UBXII(qt , c).
The conditional probability density function of yt , with the quantile-based parametrization
proposed by Ribeiro et al. (2022), is

f (yt |Ft−1) = log τ−c logc−1 y−1
t

yt log
(
1 + logc q−1

t

) (1 + logc y−1
t

)log τ/ log
(
1+logc q−1

t

)
−1

, (1)

where 0 < yt < 1, 0 < qt < 1 is the conditional quantile, c > 0 is a shape parameter, and
0 < τ < 1 indicates the order (τ × 100)th of the conditional quantile qt of Yt . For example,
if τ = 0.5, qt is the median of Yt ; or if τ = 0.1, qt is the 10th conditional percentile of
Yt . Moreover, the conditional cumulative distribution function (cdf) and conditional quantile
function (cqf) are

F(yt |Ft−1) = (
1 + logc y−1

t

)log τ/ log
(
1+logc q−1

t

)
, 0 < yt < 1, (2)

and
Q(u|Ft−1) = exp

{
−[ulog(1+logc q−1

t )/ log τ − 1]1/c
}

, 0 < τ < 1, (3)

respectively. Values of the UBXII distribution may be easily simulated by the inversion
method since the cqf has a simple closed-form expression.

The UBXII distribution is quite versatile since its density can assume many different
shapes according to the selected parameter values combination. We develop an open web
application in Shiny (R Core Team 2023) available at https://unitati.shinyapps.io/UBXII/
to visualize dynamic graphics of the UBXII density. In this application, it is possible to note
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Table 1 Sample mean of
variances of y ∼ UBXII(q, c)
with q ∈ {0.25, 0.50, 0.75} and
c ∈ {1.00, 5.00, 10.00,
15.00, 20.00} for
τ ∈ {0.1, 0.5, 0.9}

τ c

1.00 5.00 10.00 15.00 20.00

q = 0.25

0.1 0.0707 0.0133 0.0056 0.0039 0.0033

0.5 0.1130 0.0236 0.0149 0.0131 0.0125

0.9 0.0375 0.0140 0.0117 0.0111 0.0109

q = 0.50

0.1 0.0382 0.0057 0.0017 0.0008 0.0005

0.5 0.1096 0.0078 0.0019 0.0008 0.0005

0.9 0.0562 0.0183 0.0024 0.0009 0.0005

q = 0.75

0.1 0.0111 0.0017 0.0006 0.0003 0.0002

0.5 0.0683 0.0025 0.0007 0.0003 0.0002

0.9 0.0905 0.0041 0.0009 0.0004 0.0002

that c is related to the variance of the distribution UBXII. To analyze this relationship, we
conducted aMonte Carlo simulation study.We generate 10,000 samples of y ∼UBXII(q, c)
of size n = 200 with q ∈ {0.25, 0.50, 0.75} and c ∈ {1.00, 5.00, 10.00, 15.00, 20.00} for
τ ∈ {0.1, 0.5, 0.9}. We present the mean of the variances in each scenario in Table 1. Notice
that, for all considered scenarios, the variance decreases when c increases. These results
provide numerical evidence that c is a precision parameter.

To define the dynamic component of the model, we propose the following specification
for the conditional quantile qt

ηt = g(qt ) = α + x�
t β +

p∑
i=1

φi [ g(yt−i ) − x�
t−iβ ] +

q∑
j=1

θ j rt− j , (4)

where ηt is the linear predictor, g(·) is a twice-differentiable one-to-one monotonic link
function, α ∈ IR is the model intercept, β = (β1, . . . , βk)

� ∈ IRk is a k-dimensional
vector of unknown parameters corresponding to the covariates, xt = (xt1, . . . , xtk)� is a
non-random covariates vector, being k < n, and φi (i = 1, . . . , p) and θ j ( j = 1, . . . , q)

are the autoregressive (AR) and moving average (MA) parameters, respectively. Thus, they
are the parameters of the ARMA structure with p, q ∈ IN, say ARMA(p,q). The term
rt− j corresponds to a random error. Several types of residuals can be used for this moving
average error term (Benjamin et al. 2003). Generally, they are measured on the predictor
scale as rt = g(yt ) − g(qt ); see Rocha and Cribari-Neto (2009), Bayer et al. (2017, 2020a),
Almeida-Junior and Nascimento (2021), and Palm et al. (2021). It is only required that rt
must be Ft−1-measurable and assumed that IE(rt |Ft−1 = 0); see Rocha and Cribari-Neto
(2009) for more details. Here, we propose to use the residuals in the predictor scale when
τ = 0.5, i.e., for qt being the conditional median. When τ �= 0.5, we propose to consider
the quantile residuals (Dunn and Smyth 1996) for rt . That is,

rt = �−1 [F(yt |Ft−1)
]
, (5)

where �−1(·) is the standard normal quantile function and F(yt |Ft−1) is the conditional
cumulative distribution function given in (2). For the link function g(·), there are vari-
ous functions available. Some examples are the logit, probit, and complementary log–log
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(cloglog) links. Note that the conditional quantile of yt is a function of the past observations
yt−i , covariates xt , and MA error terms.

In thisway, from (1) and (4), we define the so-calledUBXII-ARMA(p, q) dynamicmodel.
In a similar manner to classical ARMA models, we require non-common factors between
the AR and MA characteristic polynomials. Further, the AR polynomial must have no unit
characteristic root; see Brockwell and Davis (2009) for more details.

The dynamic component (see Eq. (4)) is similar to that one proposed byRocha andCribari-
Neto (2009) and later by Bayer et al. (2017). However, there are two remarkable differences.
First, the random component is entirely distinct from both proposals since the response
variable here has a UBXII distribution. Second, in the class of UBXII-ARMA(p, q) models,
it is possible to model any quantile of the response instead of the mean or only the median.
Thus, it is a more general time series model and a new alternative that allows analyzing a
range of double-bounded conditional responses on the interval (0, 1).

3 Parameter estimation

The model-fitting procedure described herein is performed using the conditional maximum
likelihoodmethod.Letγ = (α,β�,φ�, θ�, c)� be the (p+q+k+2)-dimensional parameter
vector that index the UBXII-ARMA(p, q) model in a sample (y1, x1), . . . , (yn, xn), satisfy-
ing the specification given in (1) and (4). As in Rocha and Cribari-Neto (2009), Bayer et al.
(2017, 2020a), Almeida-Junior and Nascimento (2021), and Palm et al. (2021), we consider
the conditional maximum likelihood method to estimate γ . The conditional log-likelihood
function can be expressed as

	(γ ) =
n∑

t=m+1

log f (ytFt−1) =
n∑

t=m+1

	t (qt , c), (6)

where

	t (qt , c) = log(log τ−c) − log yt + (c − 1) log(log y−1
t ) − log[t(yt )] − log{log[t(qt )]}

− log τ−1 log[t(yt )]
log[t(qt )] ,

m = max{p, q} < n and t(x) = 1 + logc(x−1).
The conditional maximum likelihood estimators (CMLEs), γ̂ , are obtained maximizing

(6). We can obtain the score vector, set its components equal to zero, and solve the resulting
non-linear equation system. In what follows, we compute the score vector by differentiat-
ing (6) concerning each component of the unknown parameter vector γ .

3.1 Conditional score vector

The conditional score vector, denoted by U (γ ), is composed of the partial deriva-
tives of 	 with respect to each component of γ . That is, U (γ ) := ∂	/∂γ =
[Uα(γ ),Uβ(γ )�,Uφ(γ )�,Uθ (γ )�, Uc(γ )]�. Let γv be the vth component of γ . Then,
the (k + p + q + 1) first components of the conditional score vector are obtained using the
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chain rule as

Uγ j (γ ) := ∂	

∂γ j
=

n∑
t=m+1

∂	t (qt , c)

∂qt

dqt
dηt

∂ηt

∂γ j
. (7)

Thus, defining the quantities

y�
t := log[t(yt )], q�

t := c logc−1 q−1
t

qt t(qt ) log[t(qt )] , and q†t := log τ−c logc−1 q−1
t

qt t(qt ) log2[t(qt )]
,

the two first derivatives in (7) reduce to

∂	t (qt , c)

∂qt
= q�

t − q†t y�
t and

dqt
dηt

= 1

g′(qt )
.

The partial derivatives ∂ηt/∂γv depend on the moving average error term (rt ). Here, we
compute the derivatives for τ = 0.5, when rt is on the predictor scale. Thus, the derivative
∂ηt/∂γv is computed recursively as

∂ηt

∂α
= 1 −

q∑
j=1

θ j
∂ηt− j

∂α
,

∂ηt

∂βl
= xtl −

p∑
i=1

φi x(t−i)l −
q∑
j=1

θ j
∂ηt− j

∂βl
, for l = 1, . . . , k,

∂ηt

∂φi
= g(yt−i ) − x�

t−iβ −
q∑
j=1

θ j
∂ηt− j

∂φi
, for i = 1, . . . , p.

and

∂ηt

∂θ j
= rt− j −

q∑
w=1

θw

∂ηt−w

∂θ j
, for j = 1, . . . , q.

The last component of the conditional score vector, Uc(γ ), follows from direct differen-
tiation of (6)

∂	

∂c
=

n∑
t=m+1

∂	t (qt , c)

∂c
=

n∑
t=m+1

y

t ,

where

y

t = 1

c
+ log(log y−1

t ) − log(log q−1
t )[t(qi ) − 1]

t(qt ) log[t(qt )] − [t(yt ) − 1] log(log y−1
t )

t(yt )

− log τ−1 log[t(qt )][t(yt )]−1[t(yt ) − 1] log(log y−1
t )

log2[t(qt )]
+ log τ−1[t(qt ) − 1] log(log q−1

t ) log[t(yt )]
t(qt ) log2[t(qt )]

.
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Let M, P, R be matrices with dimensions (n −m) × k, (n −m) × p and (n −m) × q,

respectively. The (i, j)-th element of those matrices are given by

Mi, j = ∂ηi+m

∂β j
, Pi, j = ∂ηi+m

∂φ j
, and Ri, j = ∂ηi+m

∂θ j
,

respectively. Then, we can compactly write the score vector’s components of γ as

Uα(γ ) = a�T (q� − q† y�)

Uβ(γ ) = M�T (q� − q† y�)

Uφ(γ ) = P�T (q� − q† y�)

Uθ (γ ) = R�T (q� − q† y�)

Uc(γ ) = y
�1,

where a = (∂ηm+1/∂α, . . . , ∂ηn/∂α)�, T is a diagonal matrix defined as T =
diag{1/g′(qm+1), . . . , 1/g′(qn)}, q� = (q�

m+1, . . . , q
�
n)

�, q‡ = (q†m+1, . . . , q
†
n )

�, y� =
(y�

m+1, . . . , y
�
n)

�, y
 = (y

m+1, . . . , y


n)
�, and 1 is an (n − m)-dimensional vector of ones.

By setting each U (γ ) component equal to zero, i.e., Uα(γ ) = 0, Uβ(γ ) = 0,
Uφ(γ ) = 0, Uθ (γ ) = 0, Uc(γ ) = 0, and solving these equations simultaneously, the

CMLE γ̂ = (α̂, β̂
�
, φ̂

�
, θ̂

�
, ĉ)� of γ is obtained. However, since this system is non-linear

and cannot be solved explicitly, we may maximize the log-likelihood function in (6) through
non-linear optimizationmethods such asNewton–Raphsonor quasi-Newton-type algorithms.
We consider the quasi-Newton algorithm the so-called Broyden– Fletcher–Goldfarb–Shanno
(BFGS) method (Press et al. 1992), including the conditional score function U (γ ). This
method is an iterative optimization algorithm, and thus, it requires initialization. We com-
pute the starting values for α, β, and φ from an ordinary least squares estimate by considering
a linear regression, where the response is Y = (g(ym+1), . . . , g(yn))�, and the covariates
matrix is expressed as

X =

⎡
⎢⎢⎢⎣

1 x(m+1)1 . . . x(m+1)r g(ym) g(ym−1) · · · g(ym−p+1)

1 x(m+2)1 · · · x(m+2)r g(ym+1) g(ym) · · · g(ym−p+2)
...

...
. . .

...
...

...
. . .

...

1 xn1 · · · xnr g(yn−1) g(yn−2) · · · g(yn−p)

⎤
⎥⎥⎥⎦ .

For the moving average parameters θ , the starting values are set to zero.

4 Large sample inference

From the asymptotic properties of likelihood estimators, under the usual regularity condi-
tions (Sen et al. 2009), we have that

γ̂ ∼ N(k+p+q+2)
(
γ , K−1(γ )

)
,

where K−1(γ ) is the inverse of the expected information matrix defined as K (γ ) =
IE[−∂	2(γ )/ (∂γ ∂γ �)] and Nr denotes a r -dimensional normal distribution. This means
that the CMLE of γ , γ̂ , is asymptotically unbiased and normally distributed with covariance
matrix equal to the inverse of the Fisher’s information matrix. The matrix K (γ ) can be con-
sistently estimated using the observed information matrix evaluated at the CMLE γ̂ , denoted
by J(γ̂ ) (Lindsay and Li 1997).
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From the asymptotic normality of γ̂ , it is possible to construct a 100(1−ξ)%approximate
confidence interval with ξ ∈ (0, 1/2) for each element of γ , i.e., for γi (i = 1, . . . , p + q +
k + 2) as follows

[
γ̂i − z1−ξ/2

√
J (γ̂ )i i ; γ̂i + z1−ξ/2

√
J (γ̂ )i i

]
, (8)

where z1−ξ/2 is the standard normal quantile, such that �(z) = 1 − ξ/2, and J (γ̂ )i i is the
(i, i)th element of the J−1(γ̂ ).

Analogously, based on the asymptotic distribution of the CMLE, we can construct asymp-
totic test statistics for testing the null hypothesisH0 : γi = γ 0

i againstH1 : γi �= γ 0
i . Based

on the Wald test (Wald 1943), the test statistics may be defined as (Pawitan 2001):

Z = γ̂i − γ 0
i√

J (γ̂ )i i
.

Under H0, the Z statistic has approximately a standard normal distribution. Thus, at the
ξ%-significance level, we reject the null hypothesis, whether the absolute observed value of
Z , denoted by |z|, exceeds the quantile z1−ξ/2.

5 Diagnostic analysis and forecasting

After fitting a model, it is important to perform adequacy tests to check whether it fully
captures the data dynamics. Since a fitted time series model passes all diagnostic checks,
we may use it for out-of-sample forecasting. In what follows, we introduce and discuss the
residual analysis that is useful to identify whether the assumptions of the model are satisfied.
Besides, we present criteria that can be used for model selection and discuss how to obtain
out in-sample and out-of-sample forecasts from UBXII-ARMA(p, q) model.

5.1 Residual analysis andmodel selection

Weconsider the quantile residuals (Dunn and Smyth 1996) since they have several advantages
over other residuals (Pereira 2019). For the UBXII-ARMA model, the quantile residuals are
defined in (5), being F(yt |Ft−1) (given in (2)) evaluated at the CMLEs, specifically at the
predicted quantiles q̂t that corresponds to fitted values and at the estimate ĉ.

The quantile residuals are supposed to be roughly non-correlated and normally distributed
with zero mean and unit variance when the model is suitable for the data. Furthermore, their
sample autocorrelations and partial autocorrelations functions must be non-significant.

To choose the most suitable model among several competitive models, the Akaike infor-
mation criterion (AIC) (Akaike 1973) or, alternatively, the Bayesian information criterion
(BIC) (Akaike 1978) can be considered for models selection. Both criteria are based on the
conditional maximum log-likelihood function, 	̂, namely

AIC(ν) = 2 (ν − 	̂) and BIC(ν) = ν log n − 2	̂,

where ν is the number of estimated parameters and n is the sample size. Among the candidate
models set, we selected themodel that provides the smallest AIC andBIC values. For detailed
properties of these criteria, the reader is referred to Choi (2012).
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5.2 Forecasting

Suppose that we are interested in forecasting the quantile at time s, qs , using all the available
information at time n (s > n). Then, the forecast horizon is h0 = s−n. Initially, we compute
the predicted quantiles {q̂t }nt=m+1 based on the CMLE γ̂ , starting at t = m + 1, sequentially
calculating

q̂t = g−1

⎛
⎝α̂ + x�

t β̂ +
p∑

i=1

φ̂i [ g(yt−i ) − x�
t−i β̂ ] +

q∑
j=1

θ̂ j r̂t− j

⎞
⎠ ,

where

r̂t =
⎧
⎨
⎩
0 if t ≤ m.

g(yt ) − g(q̂t ) if m < t ≤ n and τ = 0.5
�−1

[
F(yt |Ft−1)

]
, if m < t ≤ n and τ �= 0.5.

Then, for t = n + 1, . . . , s, we need to assume that the observations from the covariates xt
are known. Hence, the forecast of the conditional quantiles , for h = 1, . . . , h0, are obtained
sequentially from

q̂n+h = g−1

⎛
⎝α̂ + x�

n+h β̂ +
p∑

i=1

φ̂i [ g(yn+h−i ) − x�
n+h−i β̂ ] +

q∑
j=1

θ̂ j r̂n+h− j

⎞
⎠ ,

where for t > n, r̂t = 0 and

g(yt ) =
{
g(q̂t ) if t > n,

g(yt ) if t ≤ n.

To empirically evaluate the forecasting performance of the UBXII-ARMA model and
compare it to other fitted models, we consider two measures of forecast accuracy: the mean
square error (MSE) and the mean absolute percentage error (MAPE). These measures allow
for assessing the difference between the observed and the predicted value. TheMSE is largely
used due to its theoretical relevance in statistical modeling. However, when the observations
assume real positive values, the use of the MAPE is indicated; see Hyndman and Koehler
(2006) for a detailed discussion about available measures of univariate time series forecast
accuracy. The MSE and MAPE are, respectively, defined by

MSE = 1

h0

h0∑
h=1

(yh − q̂h)
2 and MAPE =

(
1

h0

h0∑
h=1

|yh − q̂h |
|yh |

)
× 100,

where the yh is each observed value and q̂h is the corresponding predicted value for the
forecast horizon h = 1, . . . , h0. Low values for MSE and MAPE indicate more accurate
predictions.

6 Simulation study

We conduct a Monte Carlo simulation study to assess the finite sample performance of the
CMLEs and asymptotic confidence intervals of theUBXII-ARMA(p, q)model’s parameters.
Samples of sizes n ∈ {75, 125, 200, 300, 500, 1000} are considered in four distinct scenarios.
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For each scenario and sample size, we compute 10,000 times the CMLEs and the confidence
intervals of the model parameters.

Several dynamic specifications and different parameter values are considered. For all
settings, τ = 0.5 was chosen, implying that qt is the conditional median of Yt . We consider
the logit for g(·) in (4). The simulation schemes are

• Scenario 1: UBXII-ARMA(2, 2) with parametric values α = 0.5, φ1 = 0.6, φ2 = −0.4,
θ1 = 0.4, θ2 = 0.1, and c = 5.6.

• Scenario 2: UBXII-ARMA(1, 1) with parametric values α = 0.2, φ1 = 0.6, θ1 = 0.1,
and c = 3.8.

• Scenario 3: UBXII-ARMA(2, 1) with parametric values α = 0.4, φ1 = 0.6, φ2 = −0.4,
θ1 = 0.3, and c = 4.5.

• Scenario 4: UBXII-ARMA(1, 2) with parametric values α = 0.7, φ1 = −0.7, θ1 = 0.4,
θ2 = 0.6, and c = 3.5.

For Scenario 2, we also consider the probit and cloglog link functions. The results are given in
Appendix A (see Tables 10 and 11) and are very similar to those with logit link function. For
the simulation of samples from a UBXII-ARMA(p, q) process, we use the same algorithm
employed byBayer et al. (2017). The random componentwas generated through the inversion
method, replacing u ∼ U (0, 1) in (3). Besides, we assume the dynamic structure given in
(4). All Monte Carlo simulations are performed using the R programming language (R Core
Team 2023). Maximization of the conditional log-likelihood function in (6) is carried out
using the BFGS quasi-Newton non-linear optimization algorithm implemented at theoptim
function, including the conditional score function U (γ ).

To numerically evaluate the behavior of the CMLEs, we compute the absolute values of
the percentage relative bias (RB%) and mean squared error (MSE). Monte Carlo results for
the different structures are reported in Tables 2 and 3.

The largest RB%s are around 14, 16, and 30 for the moving average parameters’ CMLEs
(θ1, θ2) in Scenarios 1 and 2, respectively, when the sample size is n ∈ {75, 125, 200}.
All the remaining RB%s are lower than 11. Note that the RB%s and MSEs are small in
most scenarios only for n ≥ 200. The RB% and MSE values of Scenario 2 are close to the
Monte Carlo simulation results for point estimation in the βARMA(1, 1) model carried out
by Palm and Bayer (2017) (see Table 3, no corrected estimates). Roughly, it is noteworthy
that the UBXII-ARMA(1, 1) model yields smaller MSE values by comparing the sample
size n ∈ {75, 125} with n ∈ {50, 100}.

Overall, Bayer et al. (2017) also find that the estimates of the other parameters tend
to present better performance compared to the parameter estimates of the moving average
terms. The MSEs decrease for all scenarios from n > 200, implying that the performance
and accuracy of the CMLEs improve when the sample size increases. Therefore, the numer-
ical evaluation indicates that the properties of the CMLEs (asymptotically unbiased and
consistent) remained.

In Scenarios 1, 3, and 4, the RB% exhibits minor oscillations for sample sizes n <

200. Although these oscillations are particularly noticeable within the context of time series
models, they also can occur in regression analysis or probabilities distribution (see Figure 4
in Korkmaz et al. 2021a, which shows oscillations of the bias and MSE). This behavior may
vary depending on the specific scenario and chosen sample sizes. For example, comparable
findings were obtained for the βARMA model (Palm and Bayer 2017), where it is possible
to observe that the total relative bias oscillates in some instances. Similar behavior to RB% is
also kept for the mean squared error (MSE) when n < 200 in Scenario 4, as MSE depends on
the bias. However, as the sample size n increases beyond 200, the RB% and MSE converge
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Table 2 Simulation results on point estimation of the UBXII-ARMA(p, q) model under ARMA structures
from Scenario 1 and 2

n Measure α̂ φ̂1 φ̂2 θ̂1 θ̂2 ĉ

Scenario 1

75 RB% 0.2339 3.3881 3.7045 6.0854 5.8984 5.3870

MSE 0.0299 0.1264 0.0279 0.1465 0.0779 0.4080

125 RB% 0.9537 2.4038 1.7548 3.9443 7.2060 3.1812

MSE 0.0158 0.0719 0.0153 0.0802 0.0422 0.2021

200 RB% 1.7290 3.7209 2.1092 5.9806 14.3574 1.9005

MSE 0.0097 0.0400 0.0077 0.0447 0.0244 0.1098

300 RB% 1.1835 2.5614 1.4466 4.1709 10.6165 1.2470

MSE 0.0060 0.0247 0.0049 0.0273 0.0149 0.0682

500 RB% 0.5497 1.2143 0.7469 1.9129 4.4785 0.7564

MSE 0.0032 0.0133 0.0029 0.0145 0.0078 0.0388

1000 RB% 0.2463 0.4814 0.2780 0.7722 1.7194 0.3847

MSE 0.0015 0.0063 0.0014 0.0068 0.0037 0.0187

Scenario 2

75 RB% 10.2923 5.8411 – 29.2570 – 3.2664

MSE 0.0104 0.0172 – 0.0219 – 0.1377

125 RB% 5.2377 3.0889 – 15.6317 – 1.9586

MSE 0.0054 0.0087 – 0.0119 – 0.0749

200 RB% 3.4119 2.0115 – 9.7231 – 1.1877

MSE 0.0031 0.0051 – 0.0071 – 0.0431

300 RB% 2.4575 1.4414 – 6.7811 – 0.8037

MSE 0.0020 0.0033 – 0.0045 – 0.0278

500 RB% 1.5339 0.8680 – 4.1243 – 0.4907

MSE 0.0012 0.0019 – 0.0027 – 0.0162

1000 RB% 0.8564 0.4645 – 1.9345 – 0.2597

MSE 0.0006 0.0009 – 0.0013 – 0.0080

to zero. This convergence is depicted in Fig. 1, which illustrates the total RB% (TRB) and
total MSE (TMSE) of the CMLEs obtained from the UBXII-ARMA(p, q) model with n ∈
{75, 125, 200, 300, 1000}. The TRB and TMSE are computed from the sum of the RB% and
MSE of the parameters’ CMLEs for each sample size and scenario, respectively. Notably,
both measures show an evident decay to zero for n > 200 in all scenarios.

Table 4 presents the estimated coverage probability from the asymptotic confidence inter-
vals for the parametersα, φ1, φ2, θ1, θ2, c. The limits of the confidence intervals are computed
from (8) with a significance level (ξ ) of 5%. Overall, the coverage probability of the 95%
pointwise confidence intervals of all the parameters is close to the considered nominal level
when n > 200. Scenario 1 has the lowest coverage probabilities, mainly for n = 75.

A similar simulation study is carried out to analyze the performance of the parameters’
CMLEs of the UBXII-ARMAmodel when τ assumes extreme values, such as τ ∈ {0.1, 0.9}.
In these cases, qt is the 10th and the 90th conditional percentile of Yt , respectively. We select
Scenario 2 with the link function logit to perform the analysis. However, we choose c = 5.0
for τ = 0.1 and c = 13.5 for τ = 0.9 to keep a similar variance of the simulated data when
changing the value of τ . Tables 12 and 13 (see Appendix A) display the RB%, MSE, and
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Table 3 Simulation results on point estimation of the UBXII-ARMA(p, q) model under ARMA structures
from Scenario 3 and 4

n Measure α̂ φ̂1 φ̂2 θ̂1 θ̂2 ĉ

Scenario 3

75 RB% 0.0138 3.3712 4.8744 8.2591 – 4.2183

MSE 0.0071 0.0327 0.0173 0.0422 – 0.2193

125 RB% 0.1561 1.4443 2.1207 3.1087 – 2.4920

MSE 0.0038 0.0168 0.0095 0.0194 – 0.1136

200 RB% 0.1379 0.8969 1.2951 2.0487 – 1.5053

MSE 0.0023 0.0096 0.0056 0.0110 – 0.0640

300 RB% 0.0407 0.5242 0.8567 1.3184 – 0.9965

MSE 0.0015 0.0060 0.0036 0.0068 – 0.0405

500 RB% 0.0732 0.3426 0.4869 0.7702 – 0.6109

MSE 0.0009 0.0036 0.0022 0.0039 – 0.0234

1000 RB% 0.0462 0.1147 0.1634 0.3227 – 0.3162

MSE 0.0005 0.0017 0.0010 0.0019 – 0.0113

Scenario 4

75 RB% 1.4759 0.9546 – 0.2882 0.6091 3.2104

MSE 0.0240 0.0327 – 0.0220 0.0448 0.1405

125 RB% 0.7866 1.1885 – 0.7399 0.6516 1.8932

MSE 0.0092 0.0047 – 0.0096 0.0122 0.0750

200 RB% 0.5730 0.7696 – 0.8358 0.9922 1.1757

MSE 0.0432 0.0213 – 0.0058 0.0074 0.0499

300 RB% 0.0628 0.6146 – 0.4544 0.6662 0.8681

MSE 0.0034 0.0132 – 0.0023 0.0033 0.0330

500 RB% 0.1184 0.9338 – 0.4968 0.6420 0.5608

MSE 0.0017 0.0009 – 0.0009 0.0016 0.0180

1000 RB% 0.1984 0.8428 – 0.5452 0.5517 0.3950

MSE 0.0008 0.0005 – 0.0005 0.0012 0.0104

estimated coverage probability from the asymptotic confidence intervals for the parameters
α, φ1, θ1, c and sample sizes considered. The results are quite similar to the previous when
τ = 0.5. In general, the RB% and MSE tend to zero when n increases. For τ = 0.1 the α

estimates have the biggest bias. However, when τ = 0.9, this does not occur. The estimated
coverage probabilities with τ = 0.1 are similar to those for τ = 0.5, and when n > 125,
they closely approach 95% for all parameters. On the other hand, if τ = 0.9, these coverage
probabilities tend to approach 95% at a slower rate for the parameters φ1, θ1, and c.

We also assess the performance of the UBXII-ARMA model’s CMLEs under the mis-
specification of the random component. For this, we conduct a simulation study to compare
the proposed model with the KARMA and βARMA models, which are well known in the
analysis of limited time series. Another goal is to evaluate the behavior of the AIC and
BIC as selection criteria for different models and analyze the performance of the forecasting
measures MSE and MAPE in-sample and out-of-sample for the different schemes of data
generation.
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Fig. 1 Total RB%s and total MSE of the CMLEs from UBXII-ARMA(p, q) model with n ∈
{75, 125, 200, 300, 1000}

The KARMA and βARMA models are defined similarly to the UBXII-ARMA model.
The random component in the KARMAmodel has Kumaraswamy (Kw) distribution, that is,
Yt |Ft−1 ∼ Kw(ωt , ϕ). The conditional density of Yt given Ft−1 by considering the standard
unit interval is

f (yt |Ft−1) = ϕ log 0.5

log(1 − ω
ϕ
t )

yϕ
t (1 − yϕ

t )log 0.5/ log(1−ω
ϕ
t )−1, yt ∈ (0, 1),

where 0 < ωt < 1 is the conditional median of Yt |Ft−1 and ϕ > 0 is a precision parameter.
The dynamic component is similar to the given by (4). It is obtained by replacing the quantile
qt by the median ωt in (4) with rt measured on the predictor scale.

In the βARMA model, the random component has a beta distribution. Then, in this case,
Yt |Ft−1 ∼ beta(μt , ϕ) with conditional distribution given by

f (yt |Ft−1) = �(δ)

�(μtδ)�((1 − μt )δ)
yμt δ−1
t (1 − yt )

(1−μt )δ−1,

where 0 < μt < 1 is the conditional mean of Yt |Ft−1, δ > 0 is a precision parameter
and �(α) = ∫∞

0 xα−1e−xdx is the complete gamma function. Similarly, to get the dynamic
component of this model, qt must be replaced by μt in (4) with rt measured on the predictor
scale.

In what follows, we describe how the simulation was performed.

1. We generated a sample of size n = 200 observations for each one of the models with
ARMA(1, 1) structures and true parameters: α = 0.1, φ1 = 0.4, θ1 = 0.3, and c = 6.6
for the UBXII-ARMA model (with τ = 0.5), ϕ = 9.8 for the KARMA model, and
δ = 62 for the βARMA model.

2. We fit the true model and the UBXII-ARMA model for each generating scheme. When
the UBXII-ARMA is the true model, we fit the others two competing models.

3. We compute theMSE,MAPE (in-sample and out-of-sample), AIC, and BIC for the three
fitted models in each setting.

4. To obtain the out-of-sample forecastings, we consider a forecasting horizon with h = 6.
That is, the last six observations were separated from the sample, and the model is fitted
with the 194 remaining observations.

5. Each scheme is repeated R = 10, 000 times.
6. After, we then calculated the frequencies at which the AIC (AIC(%)) and BIC (BIC(%))

criteria selected the corrected model.
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Table 4 Estimated coverage probability from the asymptotic confidence intervals for γ

Parameter α φ1 φ2 θ1 θ2 c

n Scenario 1

75 0.8244 0.7556 0.8683 0.7463 0.7770 0.9271

125 0.8777 0.8316 0.9028 0.8313 0.8449 0.9376

200 0.9037 0.8763 0.9270 0.8781 0.8845 0.9412

300 0.9233 0.9038 0.9356 0.9042 0.9086 0.9450

500 0.9354 0.9307 0.9426 0.9282 0.9322 0.9498

1000 0.9455 0.9425 0.9463 0.9427 0.9398 0.9510

n Scenario 2

75 0.9486 0.9491 – 0.9275 – 0.9437

125 0.9521 0.9509 – 0.9377 – 0.9439

200 0.9541 0.9497 – 0.9405 – 0.9485

300 0.9533 0.9532 – 0.9442 – 0.9482

500 0.9523 0.9501 – 0.9443 – 0.9507

1000 0.9501 0.9477 – 0.9445 – 0.9501

n Scenario 3

75 0.9249 0.8967 0.9020 0.8867 – 0.9369

125 0.9396 0.9201 0.9205 0.9180 – 0.9427

200 0.9461 0.9364 0.9337 0.9342 – 0.9459

300 0.9488 0.9431 0.9394 0.9412 – 0.9460

500 0.9472 0.9464 0.9452 0.9456 – 0.9498

1000 0.9479 0.9502 0.9500 0.9493 – 0.9511

n Scenario 4

75 0.9277 0.9300 – 0.9161 0.9070 0.9303

125 0.9387 0.9416 – 0.9278 0.9292 0.9376

200 0.9439 0.9385 – 0.9359 0.9368 0.9404

300 0.9429 0.9442 – 0.9442 0.9457 0.9448

500 0.9464 0.9445 – 0.9418 0.9431 0.9397

1000 0.9510 0.9392 – 0.9442 0.9483 0.9420

7. We also obtain the mean of MSEs and MAPEs (in-sample and out-of-sample) for each
setting.

Table 5 displays the performance of the UBXII-ARMA model when compared with the
well-known βARMA and KARMAmodels used for analyzing bounded time series. One can
note that the estimates obtained from the βARMA model and, mainly, from the KARMA
model differ from those using the proposedUBXII-ARMAmodel. The βARMAmodel is the
most competitive but still presents a worse performance for fitting UBXII random variables.
The selection percentage of AIC and BIC is the same for all cases. However, the results
indicate that in this study both information criteria are reliable for model selection among the
considered competitive models since they selected the correct model in most cases. Themean
MSEs (in-sample and out-of-sample) were very close in each scheme. On the other hand, the
mean MAPEs obtained for out-of-sample forecasting favor the UBXII-ARMA model in all
the cases.
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Table 6 Descriptive statistics of the monthly average proportions of stocked energy in the Southeast of Brazil

Min 1st Qu. Med Mean 3rd Qu. Max Var Asym Exc. Kurt

0.1582 0.3733 0.5547 0.5464 0.7278 0.8782 0.0411 − 0.0515 − 1.2480

7 Application

This section presents an empirical application study of the UBXII-ARMA(p, q) model. The
data refer to the monthly proportion of stored hydroelectric energy in Southeast Brazil and
are available at [32]. The dynamics of the proportion of stored hydroelectric energy in South
Brazil was studied by Palm and Bayer (2017) and, more recently, it was also analyzed by
Scher et al. (2020). Studying the stored energy is essential to best managing water resources
and ensuring the energy supply in Brazil. Energy forecasting is useful to predict problems of
lack or accumulation of energy and could avoid waste. Consequently, one can also attend to
energy demand satisfactorily and reduce costs and environmental consequences (Hong et al.
2014; Palm and Bayer 2017; Shaqsi et al. 2020).

In this application, we consider the time series of the proportion of stored hydroelectric
energy in Southeast Brazil in the period from May 2000 to August 2019, thus covering 232
months. The last ten observations were considered only to assess the forecasting performance
of the model. Hence, we fitted the model for the time series from May 2000 to April 2019,
totaling 222 months. Our interest is to model the median; hence, we set τ = 0.5. Modeling
the median instead of the mean in time series offers the advantage of increased robustness
against extreme values or outliers. While the mean can be heavily influenced by outliers,
which may not be representative of the overall data pattern, the median is less affected by
such extreme values. We used the programming language R (R Core Team 2023) to carry out
the whole analysis. The computer code used in this application is available at https://github.
com/tatianefribeiro/ubxiiarma.

Table 6 brings some descriptive statistic measures. Notice that these data present approxi-
mately symmetric distribution since the mean and median are quite close and the asymmetry
coefficient is close to zero. This indicates that it is more suitable to model the conditional
median of this time series than another quantile. Figure 2a shows the seasonal trend decompo-
sition using LOESS (STL) (Cleveland et al. 1990) for time series of the proportion of stored
energy. We may identify the annual seasonality and that the proportions of stored energy
were lower before 2002 and after 2013. Figure 2b also shows the seasonality of the time
series. The seasonality is obtained using the monthplot function, which extracts subseries
from a time series and plots them all in one frame (R Core Team 2023). The proportions of
stored energy grow until April, then decrease from April to November. This seasonal pattern
may be modeled using trigonometric functions as covariates as a simple harmonic regression
approach (Bloomfield 2004). Figure 2c shows the sample autocorrelation function (ACF) of
the time series, whereas Fig. 2d brings the sample partial autocorrelation function (PACF).
Note that there is a cut-off after lag 2 in the PACF’s plot. This indicates that this series can
be well modeled by a structure of the type AR(2).

In addition to the UBXII-ARMAmodel, we also fitted the βARMA and KARMAmodels
for comparison purposes. The final models were selected according to the AIC criterion. All
considered models have autoregressive and moving average orders up to three and logit link
function. The smallest AIC in each class was obtained by the UBXII-AR(2), βAR(2), and
KAR(2) models. The three models agree with what was observed in the PACF’S plot.
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Fig. 2 Observed proportions of stored hydroelectric energy time series in Southeast of Brazil, its Seasonal-
Trend decomposition, autocorrelation, and partial autocorrelation plots

The proposed UBXII-AR(2) model assumes that the monthly proportion Yt has UBXII
distribution with conditional median qt and shape parameter c, with the dynamic component

log

(
qt

1 − qt

)
= α + x�

t β +
2∑

i=1

φi

[
log

(
yt−i

1 − yt−i

)
− x�

t−iβ

]
, (9)

where α ∈ IR is a parameter to be estimated (intercept of the model), β = (β1, β2, β3)
� ∈

IR3 is the parameter vector associated to the vector of covariates x�
t = (cos(2π t/12),

sin(2π t/12), crisist ), and φ1 and φ2 are the AR coefficients. The covariate crisist is an
indicator variable equal to 1 for t before 2002 or after 2013 (t = 1, . . . , 20, 153, . . . , 222)
and zero otherwise. The βAR(2) model has assumes that Yt |Ft−1 follows a beta distribution
(Yt |Ft−1 ∼ beta(μt , δ)) in that the dynamic component is obtained from Eq. (9) by replacing
qt by μt . Finally, in the KAR(2) model is supposed that Yt |Ft−1 follows a Kumaraswamy
distribution (Yt |Ft−1 ∼ Kw(ωt , ϕ)) and the dynamic component also is given in (9), by
replacing qt by ωt .

Table 7 gives the parameter estimates, standard errors, z statistic value, and p value of
each fitted model. The residual analysis indicated that all these models were appropriate to
describe the monthly proportion of stored energy. Note that, as expected, both covariates
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Table 7 Estimates, standard
errors, z values and p values of
the parameters α (intercept), β j
( j = 1, 2, 3) and φk (k = 1, 2)
(autoregressive coefficients), and
c of the UBXII-AR(2) model for
the proportion of stored
hydroelectric energy in Southeast
Brazil

Estimate SE z value p value

UBXII-AR(2)

α 0.0206 0.0156 1.3260 0.1848

β1 0.4034 0.0472 8.5449 < 0.0001

β2 0.1138 0.0419 2.7172 0.0066

β3 − 0.2630 0.1316 − 1.9988 0.0456

φ1 1.3222 0.0432 30.5828 < 0.0001

φ2 − 0.4072 0.0430 − 9.4752 < 0.0001

c 11.3464 0.6468 17.5428 < 0.0001

βAR(2)

α 0.0071 0.0097 0.7267 0.4674

β1 0.6172 0.0402 15.3585 < 0.0001

β2 0.1791 0.0395 4.5336 < 0.0001

β3 0.0155 0.0948 0.1632 0.8704

φ1 1.3797 0.0504 27.3683 < 0.0001

φ2 − 0.4170 0.0506 − 8.2343 < 0.0001

δ 200.7800 19.1045 10.5096 < 0.0001

KAR(2)

α 0.0304 0.0132 2.3106 0.0209

β1 0.8756 0.0637 13.7389 < 0.0001

β2 0.3578 0.0869 4.1184 < 0.0001

β3 0.0912 0.0746 1.2232 0.2213

φ1 1.6120 0.0644 25.0486 < 0.0001

φ1 − 0.6674 0.0621 − 10.7487 < 0.0001

ϕ 14.6954 0.7177 20.4769 < 0.0001

considered to account for this monthly seasonal component were significant at the usual
significance level of 5% in all the classes of models.

The crisis effect was significant only for the UBXII-AR(2) (p = 0.0456). The crisis effect
estimate is − 0.2630, resulting in exp(−0.2630) = 0.769, indicating that during the crisis
the odds ratio decreased 23.1%. For example, if the proportion of stored hydroelectric energy
is 50% in the non-crisis period, the stored energy is only 43.5% during the crisis period. For
a proportion of 40% before de crisis, this proportion reaches 33.9% in the crisis, for the same
month of the year.

Figure 3a, b shows the residual ACF and PACF from the fitted UBXII-AR(2)model. Both
the plots indicate that the residuals do not present significant autocorrelation. The sample
ACFs and PACFs of the residuals from βAR(2) and KAR(2) are similar those UBXII-AR(2)
model. Consequently, the models appear suitable for out-of-sample forecasting.

Figure 4a gives a plot of the observed (solid lines) and predicted values (blue dashed
lines) from the fitted UBXII-AR(2) model. Note that the proposed model provides accurate
forecasts since the fitted values are quite close to observed data over time. That is, the UBXII-
AR(2) model is suitable to capture the proportion of stored energy dynamics. Similarly, in
the out-of-sample forecasting comparison, the new dynamic model has the best performance;
see Table 8. Moreover, Fig. 4a also shows naive prediction which is the predicted value not
including the autoregressive and moving average terms (red dashed lines). It measures the
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Fig. 3 Residual diagnostic plots of the fitted UBXII-AR(2) and UBXII-ARMA(2, 3) model for the proportion
of stored hydroelectric energy in the Southeast of Brazil

Fig. 4 In-sample forecasting performance plots from the UBXII-AR(2) and UBXII-ARMA(2, 3) models and
naive prediction

123



Forecasting the proportion of stored energy using the unit... Page 21 of 28    27 

effect of the covariates (cosine, sine, and crisis) on the median proportion of stored energy,
excluding the AR and MA terms. That is, we plot the estimated quantiles according to

log

(
q̂t

1 − q̂t

)
= α̂ + β̂1cos(2π t/12) + β̂2sin(2π t/12) + β̂3crisist ,

where α̂ and β̂ j ( j = 1, 2, 3) are given in Table 7 (UBXII-AR(2) model). The plot displays
the effect of the water crisis since the time series changes of the level before 2002 and after
2013.

Using the fitted models in Table 7, we calculate out-of-sample forecasts for different
forecast horizons (h) ranging from 1 to 10 months. Table 8 provides values of the accuracy
measures (defined in Sect. 5) for the three fitted models for each h ∈ {1, . . . , 10}. According
to the results, the UBXII-AR(2) provides the best out-of-sample forecasting since the MSE
and MAPE presented the smallest values for all forecast horizons h considered. Thus, the
UBXII-AR(2) forecasts are closest to the observed proportions for the ten months. Although
the UBXII-AR(2) and βAR(2) model’s MSEs and MAPEs are close for some forecasting
horizons h, the βAR(2) model does not capture the crisis effect. To Cordeiro et al. (2021),
when the choice of the distribution for the response variable is appropriate, generally, there
is an improvement in the standard errors of the estimated regression coefficients. Therefore,
we conclude that the UBXII-AR(2) model is more suitable for these data.

For this same data set, we also perform an application of the UBXII-ARMA(p, q) con-
sidering τ = 0.9. Our objective is to exemplify the use of the UBXII-ARMA(p, q) model for
other quantiles besides the median. Therefore, we model the 90th conditional percentile qt
of the proportion of stored hydroelectric energy in Southeast Brazil from May 2000 to April
2019. The best model selected according to the AIC criterion was the UBXII-ARMA(2, 3),
given by

log

(
qt

1 − qt

)
=α + x�

t β +
2∑

i=1

φi

[
log

(
yt−i

1 − yt−i

)
− x�

t−iβ

]
+

3∑
j=1

θ j rt− j ,

where x�
t = (cos(2π t/12), cos(4π t/12), sin(8π t/12)) and θ j ( j = 1, 2, 3) are the MA

coefficients. Table 9 presents the parameter’s estimates, standard errors, value of z statistic,
and p values associated. The estimates of β3 and φ2 are not statistically significant at a
significance level of 5%.Nevertheless, including these coefficients has led to an improvement
in the fit of the model. The crisis covariable was not considered since it was not statistically
significant.

Figure 4b displays the observed stored hydroelectric energy proportion in Southeast Brazil
and the predicted 90th conditional percentile. We observe that the predicted values (blue
dashed lines) are higher than those observed values (solid lines) since the 90th percentile
represents the value below which 90% of the observed data points lie. However, they are
quite close to observed data.

The sample ACF and PACF plots of the residuals from the fitted UBXII-ARMA(2, 3)
model are given in Fig. 3c, d. In both plots, just two lags are outside the 95% confidence
interval. Thus, there is no evidence that the residuals exhibit significant autocorrelation or
partial autocorrelation. This suggests that the model has adequately captured the temporal
dependencies in the data.
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Table 9 Fitted
UBXII-ARMA(2, 3) model for
the 90th conditional percentile of
the proportion of stored
hydroelectric energy in Southeast
Brazil

Estimate SE z value p value

α 0.3401 0.0323 10.5460 < 0.0001

β1 0.4341 0.0433 10.0162 < 0.0001

β2 − 0.0561 0.0172 − 3.2635 0.0011

β3 − 0.0116 0.0065 − 1.7914 0.0732

φ1 0.8524 0.1275 6.6867 < 0.0001

φ2 − 0.0635 0.1132 − 0.5610 0.5748

θ1 0.0776 0.0225 3.4455 0.0006

θ2 0.0568 0.0138 4.1293 < 0.0001

θ3 0.0297 0.0096 3.0857 0.0020

c 10.5225 0.6325 16.6355 < 0.0001

8 Conclusion

This paper proposes a new class of dynamic models: the unit Burr XII quantile autoregres-
sive moving average (UBXII-ARMA) model. The new UBXII-ARMA model is defined by
incorporating autoregressive and moving average terms additively into the linear predictor
of the UBXII regression proposed by Ribeiro et al. (2022). This class is appropriate for
modeling and forecasting continuous dependent variables over time in the interval (0, 1),
such as rates, proportions, and indexes. The new model is versatile for modeling time series
proportional data since the UBXII density has different shapes depending on the parameter
values. Furthermore, our proposed model depends on the quantile of the response variable
over time, which differentiates this model from the usual generalized autoregressive mov-
ing average (GARMA) models or other type-GARMA models that depend on the mean or
median response.

We presented the conditional maximum likelihood estimation, derived closed-form
expressions for the score function, and presented interval estimation based on the asymptotic
properties of the conditional maximum likelihood estimators (CMLEs). We assessed the
finite-sample performance of the CMLEs in the UBXII-ARMA framework through Monte
Carlo simulations. Moreover, we present some diagnostic analysis and forecasting tools to
check whether the proposed model captures the data dynamics.

To illustrate our proposed model and methodology, we analyzed the proportion of stored
hydroelectric energy in Southeast Brazil over time. This is an important issue sincewe already
had water and energy shortages in 2013 (Leahy 2015). According to some goodness-of-fit
measures, the UBXII-ARMA model outperformed the KARMA and βARMA models for
this data set. The forecasts of our model correspond to the forecast median and outperformed
the KARMA and βARMAmodels, even being close to the βARMA forecasts. Also, only the
UBXII-ARMAmodel captured a significant effect of lowerwater levels before 2002 and after
2013, as discussed in Leahy (2015). In future studies, we intend to use the UBXII-ARMA
model for analyzing other hydro-environmental variables, such as relative air humidity and
the proportion of the useful volume of water reservoirs. We also aim to develop prediction
intervals for the UBXII-ARMA model and propose control charts based on it.
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Appendix A Simulation results for other link functions and quantiles

Tables 10 and 11 display simulation results on point and interval estimation of the parameters
that index the UBXII-ARMA(1, 1)model for τ = 0.5 with probit and cloglog link functions.

Table 10 Simulation results on
point estimation of the
UBXII-ARMA(1, 1) model
considering link functions probit
and cloglog with τ = 0.5

n Measure α̂ φ̂1 θ̂1 ĉ

Link: probit

75 RB% 10.2971 6.2068 30.9502 3.3949

MSE 0.0073 0.0191 0.0238 0.1431

125 RB% 5.0587 3.1361 15.6065 2.0489

MSE 0.0035 0.0090 0.0124 0.0779

200 RB% 3.1434 1.9642 9.4577 1.2377

MSE 0.0021 0.0053 0.0074 0.0448

300 RB% 2.1849 1.3618 6.3538 0.8316

MSE 0.0013 0.0034 0.0047 0.0287

500 RB% 1.2354 0.7832 3.8106 0.5156

MSE 0.0008 0.0020 0.0028 0.0167

1000 RB% 0.5507 0.3558 1.6452 0.2652

MSE 0.0004 0.0010 0.0014 0.0082

Link: cloglog

75 RB% 10.0274 6.2765 30.9295 3.5839

MSE 0.0064 0.0188 0.0234 0.1551

125 RB% 5.0627 3.2281 16.1747 2.1495

MSE 0.0032 0.0093 0.0126 0.0838

200 RB% 3.1703 2.0320 9.8872 1.3007

MSE 0.0018 0.0054 0.0075 0.0481

300 RB% 2.1963 1.4049 6.6352 0.8742

MSE 0.0012 0.0035 0.0048 0.0308

500 RB% 1.2448 0.8077 3.9867 0.5444

MSE 0.0007 0.0021 0.0029 0.0179

1000 RB% 0.5519 0.3633 1.7040 0.2800

MSE 0.0004 0.0010 0.0014 0.0088
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Table 11 Estimated coverage
probability from the asymptotic
confidence intervals for
UBXII-ARMA(1, 1) model’s
parameters with link functions
probit and cloglog (τ = 0.5)

Parameter α φ1 θ1 c

n Link: probit

75 0.9444 0.9449 0.9247 0.9437

125 0.9511 0.9498 0.9387 0.9442

200 0.9529 0.9495 0.9407 0.9486

300 0.9525 0.9520 0.9459 0.9481

500 0.9527 0.9501 0.9462 0.9513

1000 0.9475 0.9479 0.9478 0.9511

n Link: cloglog

75 0.9464 0.9453 0.9253 0.9431

125 0.9490 0.9482 0.9378 0.9442

200 0.9526 0.9495 0.9396 0.9487

300 0.9531 0.9512 0.9461 0.9470

500 0.9529 0.9502 0.9456 0.9515

1000 0.9475 0.9477 0.9472 0.9513

Tables 12 and 13 display simulation results on point and interval estimation of the param-
eters that index the UBXII-ARMA(1, 1) model for τ ∈ {0.1, 0.9} with logit link function.

Table 12 Simulation results on
point estimation of the
UBXII-ARMA(p, q) model for
τ ∈ {0.1, 0.9}

n Measure α̂ φ̂1 θ̂1 ĉ

τ = 0.1

75 RB% 20.0169 4.1472 0.8748 3.6643

MSE 0.0251 0.0132 0.0013 0.2672

125 RB% 10.2803 2.0369 0.0158 2.0998

MSE 0.0130 0.0069 0.0007 0.1433

200 RB% 6.2271 1.2264 0.0158 1.2762

MSE 0.0077 0.0041 0.0004 0.0832

300 RB% 4.4273 0.8718 0.0889 0.8710

MSE 0.0050 0.0027 0.0003 0.0540

500 RB% 2.6866 0.5314 0.1067 0.5013

MSE 0.0029 0.0015 0.0002 0.0315

1000 RB% 1.3512 0.2706 0.0227 0.2729

MSE 0.0014 0.0008 0.0001 0.0155

τ = 0.9

75 RB% 1.0868 1.2901 2.7443 0.8696

MSE 0.0016 0.0064 0.0001 1.8188

125 RB% 0.7281 0.4999 1.6539 0.3898

MSE 0.0012 0.0034 0.0001 1.0897

200 RB% 0.6090 0.4699 1.0103 0.1927

MSE 0.0012 0.0019 0.0001 0.6335

300 RB% 0.7301 0.3666 0.7788 0.0578

MSE 0.0004 0.0012 < 0.0001 0.4130
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Table 12 continued
n Measure α̂ φ̂1 θ̂1 ĉ

500 RB% 0.8259 0.3097 0.5511 0.0435

MSE 0.0002 0.0006 < 0.0001 0.2405

1000 RB% 0.8343 0.3628 0.4038 0.0504

MSE 0.0001 0.0003 < 0.0001 0.1197

Table 13 Estimated coverage
probability from the asymptotic
confidence intervals for the
parameters that index the
UBXII-ARMA(1, 1) model with
τ ∈ {0.1, 0.9}

Parameter α φ1 θ1 c

n τ = 0.1

75 0.9259 0.9277 0.9222 0.9447

125 0.9399 0.9372 0.9339 0.9463

200 0.9425 0.9415 0.9424 0.9495

300 0.9461 0.9458 0.9428 0.9505

500 0.9486 0.9497 0.9480 0.9473

1000 0.9486 0.9491 0.9486 0.9470

n τ = 0.9

75 0.9254 0.8962 0.8826 0.9014

125 0.9341 0.9011 0.9105 0.9098

200 0.9371 0.9096 0.9226 0.9201

300 0.9400 0.9172 0.9288 0.9267

500 0.9432 0.9201 0.9358 0.9219

1000 0.9437 0.9277 0.9382 0.9249
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